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Abstract

Vibration-induced gear noise and dynamic loads remain key concerns in many transmission applications that use

planetary gears. Tooth separations at large vibrations introduce nonlinearity in geared systems. The present work

examines the complex, nonlinear dynamic behavior of spur planetary gears using two models: (i) a lumped-parameter

model, and (ii) a finite element model. The two-dimensional (2D) lumped-parameter model represents the gears as lumped

inertias, the gear meshes as nonlinear springs with tooth contact loss and periodically varying stiffness due to changing

tooth contact conditions, and the supports as linear springs. The 2D finite element model is developed from a unique finite

element-contact analysis solver specialized for gear dynamics. Mesh stiffness variation excitation, corner contact, and gear

tooth contact loss are all intrinsically considered in the finite element analysis. The dynamics of planetary gears show a rich

spectrum of nonlinear phenomena. Nonlinear jumps, chaotic motions, and period-doubling bifurcations occur when the

mesh frequency or any of its higher harmonics are near a natural frequency of the system. Responses from the dynamic

analysis using analytical and finite element models are successfully compared qualitatively and quantitatively. These

comparisons validate the effectiveness of the lumped-parameter model to simulate the dynamics of planetary gears. Mesh

phasing rules to suppress rotational and translational vibrations in planetary gears are valid even when nonlinearity from

tooth contact loss occurs. These mesh phasing rules, however, are not valid in the chaotic and period-doubling regions.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Planetary gears are effective power transmission elements where high torque to weight ratios, large speed
reductions in compact volumes, co-axial shaft arrangements, high reliability and superior efficiency are
required. Example applications are automotive transmissions, tractors, wind turbines, helicopters, and aircraft
engines. Gear vibrations are primary concerns in most planetary gear transmission applications, where the
manifest problem may be noise or dynamic forces. Noise levels exceeding 110 dB observed in a helicopter
cabin are attributed largely to vibration of the planetary gear. Large dynamic forces increase the risk of
gear tooth or bearing failure. Kahraman and Blankenship [1,2] performed experiments on a spur gear pair
and observed various nonlinear phenomena including gear tooth contact loss, period-doubling and chaos.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Tooth separations at large vibrations, which are common in spur–gear pairs, occur even in planetary gears as
evident from the experiments by Botman [3].

Planetary gear researchers have developed lumped-parameter models and deformable gear models to
analyze gear dynamics. The literature mainly addresses static analysis, natural frequencies and vibration
modes, modeling to estimate dynamic forces and responses, and cancellation of mesh forces using the
planetary gear symmetry through mesh phasing.

Studies by Cunliffe et al. [4], Botman [5], Hidaka and Terauchi [6], Hidaka et al. [7,8], and Kahraman [9–11]
involve planetary gear models to estimate natural frequencies, vibration modes and dynamic forces. Lin and
Parker [12,13] present a 2D rotational–translational degree of freedom spur gear model and mathematically
show the unique modal properties of equally spaced and diametrically opposed planet systems. All modes can
be classified as one of rotational, translational, or planet modes. The sensitivity of natural frequencies and
modes to operating speeds and various design parameters are studied by Lin and Parker [14], who also
examine natural frequency veering phenomena [15]. Mesh stiffness-induced parametric instability is studied by
Lin and Parker [16]. A helical planetary gear model is formulated and the effect of mesh phasing on the
dynamics of equally spaced planet systems is investigated by Kahraman [9] and Kahraman and Blankenship
[17]. Parker [18] showed the effectiveness of mesh phasing in suppressing certain harmonics of planetary gear
vibration modes based on self-equilibration of the dynamic mesh forces at sun–planet and ring–planet meshes.
Ambarisha and Parker [19] extended this work to derive design rules to suppress planet mode resonances.
A thorough description of the relative mesh phasing between the sun–planet and ring–planet meshes in a
planetary gear system is given by Parker and Lin [20]. A nonlinear dynamic planetary gear model is introduced
by Kahraman [11] and the effects of various design parameters on the dynamic load sharing of the planets are
examined. Velex and Flamand [21] studied the planetary gear dynamics using lumped-parameter model.

In recent years, some researchers have used deformable gear body dynamic models. A unique finite element-
contact analysis program is used by Parker et al. [22] to model nonlinear spur gear dynamics. The finite
element results compare favorably with experiments. Parker et al. [23] used the same finite element method to
examine planetary gear dynamics. Kahraman and Vijayakar [24] studied the effect of ring gear flexibility on
the static response of planetary gears using the finite element method. A recent study by Kahraman et al. [25]
dynamically analyzes a planetary gear with thin rim using the same finite element method. Yuksel and
Kahraman [26] employed this finite element model to study tooth wear and its impact on the dynamic
behavior of a planetary gear. These studies use the same commercial finite element tool [27], which is also
adopted in this study.

Accurate analytical modeling, including proper mesh phasing relations and detailed characterization of the
nonlinear dynamics of planetary gears, is needed to estimate relative gear noise and predict dynamic forces in
industrial applications. Little work has been done to characterize the nonlinear effects of tooth separation on
planetary gear dynamics. The lack of experimental studies to understand the complex dynamics of planetary
gears and the availability of finite element software specialized for gear dynamics motivated the present study.
The objectives of this study are to: (a) characterize the complex, nonlinear dynamics of spur planetary gear
systems using a unique finite element model, and (b) propose a lumped-parameter analytical model that is
validated by comparisons with the finite element results across the range of complicated nonlinear dynamics
occurring in the system.

2. Modeling of planetary gear dynamics

2.1. Lumped-parameter analytical model

The 2D planetary gear model developed by Lin and Parker [12], extended to include tooth contact loss, is
used. This lumped-parameter, discrete model (Fig. 1(a)) is referred to as the analytical model. The gear mesh is
modeled as a nonlinear spring with periodically varying stiffness acting along the line of action. All other
supports/bearings are modeled as linear springs. The periodically varying mesh stiffness is due to the change in
the number of teeth in contact as the gears rotate. Nonlinear tooth mesh separations occur due to large
relative vibrations and the presence of backlash between the mating gear teeth [1–3]. Friction forces due to
gear teeth contact and other dissipative effects are captured using modal damping.
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Fig. 1. Planetary gear (a) lumped-parameter analytical and (b) finite element models.
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The equation of motion for a spur planetary system with N planets is

M €xþ C _xþ Kðx; tÞx ¼ FðtÞ, (1)

where x ¼ xc; yc; uc; xr; yr; ur; xs; ys; us; z1; Z1; u1; . . . ; zN ; ZN ; uN

� �T
and F(t) is the force vector of externally

applied torques (refer to Ref. [12] for system matrices). Also, x, y represent translations, u is the rotational
deflection (rotation in radians times the gear base radii or radius to the planet centers for the carrier), and z, Z
are the planet radial and tangential deflections; c, r, s represent the carrier, ring and sun, respectively, and the
subscripts from 1,y,N designate the planets. The total number of degrees of freedom is M ¼ 3N+9.

The damping matrix C is obtained from C ¼ U�Tdiagð2rioiÞU
�1; where ri (i ¼ 1,y,M) are modal damping

ratios approximating the material and bearing damping used in the finite element model, and the natural
frequencies oi and orthonormalized modal matrix U are from the time-invariant system with average mesh
stiffness.

The inertias, gear geometry parameters, natural frequencies, and damping ratios of the various systems
analyzed in this paper are given in Tables 1–3.

The nonlinearity from tooth contact loss is incorporated into the stiffness matrix through the sun–planet
and ring–planet mesh stiffnesses as

kjnðx; tÞ ¼ hðdjnÞk̂jnðtÞ, (2)

where

hðdjnÞ ¼
1; djn40;

0; djno0

(

for j ¼ s; r; n ¼ 1,y,N, and

dsn ¼ ys cos csn � xs sin csn � zn sin as � Zn cos as þ us þ un,

drn ¼ yr cos crn � xr sin crn þ zn sin ar � Zn cos ar þ ur � un,
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Table 2

Data for the planetary gear configurations presented in this work

Gear data Sun gear Ring gear Planet gear (mesh with sun gear)

Number of teeth 27 99 35

Module (mm) 2.8677 2.7782 2.8677

Pressure angle (deg) 24.60 20.19 24.60

Circular tooth thickness at pitch dia. (mm) 4.470 3.124 4.140

Hob tip radius (mm) 1.041 — 0.457

Fillet radius (mm) — 1.473 —

Base circle dia. (mm) 70.399 258.130 91.257

Root dia. (mm) 70.485 284.150 91.440

Inner dia. (mm) 57.15 — 73.66

Minor dia. (mm) — 271.73 —

Outer dia. (mm) 84.074 304.800 105.004

Center distance ¼ 88.89mm

System parameters

Rotational system (cases 1 & 2) Transl.–rotl. system (cases 3 & 4)

Sun Planet Carrier Sun Planet Carrier

I/r2 (kg) 3.11 4.89 24.80 1.56 2.46 24.80

Mass (kg) — 2.64 — 1.64 1.33 21.82

Base dia. (mm) 70.40 91.26 177.8 70.40 91.26 177.80

Bearing stiff. (N/m) — kc ¼ kp ¼ ks ¼ 2.19e9

Mesh stiff. (N/m) From Fig. 2

Pressure angle (deg) as ¼ 24.6, ar ¼ 20.19

Table 3

Damping ratios corresponding to respective natural frequencies for different cases in Table 1

Damping ratios (%)

Case 1 r1 ¼ 2.46, r2 ¼ r3 ¼ 1.10, r4 ¼ 2.10

Case 2 r1 ¼ 2.14, r2 ¼ r3 ¼ r4 ¼ 1.36, r5 ¼ 1.63

Case 3 r1 ¼ r2 ¼ 0.82, r3 ¼ 1.07, r4 ¼ r5 ¼ 0.70, r6 ¼ 1.53 (r7–14E3–5)

Case 4 r1 ¼ r2 ¼ 1.25, r3 ¼ 1.00, r4 ¼ r5 ¼ 0.84, r6 ¼ 0.67 (r7–17E3–5)

Table 1

Natural frequencies of four different systems analyzed in this study

System description Natural frequencies (Hz)

Case 1 3 planets, equally spaced DT: o1 ¼ 1846, o4 ¼ 4379

Rotational system DE: o2, o3 ¼ 2744

Case 2 4 planets, diametrically opposed (c1 ¼ 0, c2 ¼ 31p/63) DT: o1 ¼ 1925, o5 ¼ 4690

Rotational system DE: o2 ¼ 2593, o3 ¼ 2688, o4 ¼ 2860

Case 3 3 planets, equally spaced T: o1, o2 ¼ 1760, o4, o5 ¼ 3390

Translational–rotational system R: o3 ¼ 2095, o6 ¼ 5249

Case 4 4 planets, diametrically opposed (c1 ¼ 0, c2 ¼ 31p/63) T: o1 ¼ 1766, o2 ¼ 1781, o4 ¼ 3326, o5 ¼ 3332

Translational–rotational system R: o3 ¼ 2159

P: o6 ¼ 3580

Parameters are in Table 2.

Note: DT, distinct mode; DE, degenerate mode; T, translational mode; R, rotational mode; P, planet mode.

V.K. Ambarisha, R.G. Parker / Journal of Sound and Vibration 302 (2007) 577–595580
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where bkjn is the linear, periodically varying mesh stiffness, dsn and drn are the compressive deflections in the
sun–planet and ring–planet mesh springs, as and ar are the sun–planet and ring–planet operating pressure
angles, cn is the circumferential position of planet n around the sun (c1 ¼ 0), csn ¼ cn�as and crn ¼ cn+ar.
Mesh phase relations are enforced according to Parker and Lin [20].

A purely rotational model can be reduced from the above rotational–translational system by removing the
translations of the components. The rotational model allows mesh model verification isolated from the effects
of bearing deflections. The equation of motion for a rotational model with N planets is [19]

M €xþ C _xþ Kðx; tÞx ¼ FðtÞ, (3)

where x ¼ uc; ur; us; u1; . . . ; uN½ �T.
The inertia matrix,

M ¼ diagðIc=r2c þNmp; Ir=r2r ; Ip=r2p; . . . ; Ip=r2p|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
N

Þ,

where Ij for j ¼ c, r, s, p (p represents planet gear) are the moments of inertia, rj are base radii of the gears
or radius of the carrier, and mp is the mass of a planet. The damping matrix C is obtained as for a
rotational–translational model. The stiffness matrix

Kðx; tÞ ¼ Kb þ Kmðx; tÞ,

where

Kb ¼ diagðkcu; kru; ksu; 0; . . . ; 0Þ

kju for j ¼ c, r, s is the torsional bearing stiffness, and the mesh stiffness matrix Km from Ref. [19] is

Km ¼

P
ðeksn cos as þ

ekrn cos arÞ �
P ekrn �

P eksn
ekr1 �

eks1
ekr2 �

eks2 � � �
ekrN �

eksNP
krn 0 �kr1 �kr2 � � � �krNP

ksn ks1 ks2 � � � ksN

kr1 þ ks1 0 � � � 0

symmetric . .
.

� � � ..
.

krN þ ksN

0BBBBBBBBBB@

1CCCCCCCCCCA
, (4)

where eksn ¼ ksnðtÞ cos as; ekrn ¼ krnðtÞ cos ar.
Note in prior studies [10,16] the factors of cos as and cos ar in their rotational model stiffness matrix were

mistakenly omitted. Nonlinearity from tooth contact loss is introduced into the sun–planet and ring–planet
mesh stiffnesses based upon whether the mesh springs are in compression or not

kjnðx; tÞ ¼ hðdjnÞk̂jnðtÞ, (5)

where

hðdjnÞ ¼
1; djn40;

0; djno0

(
for j ¼ s, r; n ¼ 1,y,N, and

dsn ¼ �uc cos as þ us þ un,

drn ¼ �uc cos ar þ ur � un.

2.2. Finite element model

Unique commercial finite element-contact analysis software (Calyx [27]) specialized for gear dynamics is
used to model the planetary gears. This software uses a combined surface integral and finite element solution
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Fig. 2. Mesh stiffness variation from finite element static analysis of isolated gear pairs (a) sun–planet 1 mesh and (b) ring–planet 1 mesh,

for the three planets (cases 1 and 3) and four planets (cases 2 and 4) systems for an input torque of 1130Nm (10,000Lbf in) on the sun: (—)

3 planets case and (- - -) 4 planets case.
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approach developed by Vijayakar [28] and Vijayakar et al. [29]. A description of the gear dynamics finite
element formulation is given by Parker et al. [22,23]. The efficiency of the formulation dramatically reduces the
number of finite elements and enables dynamic analysis with practically feasible run times.

The finite element model does not require any external specification of the periodically varying mesh
stiffness or static transmission error to excite the dynamics. The only inputs, in addition to the gear geometry
and material properties, are the input torque and the speed of the gears. Mesh stiffness variation due to the
change in the number of teeth in contact, corner contact due to the elastic deformations of the gear teeth,
tooth contact loss, and gear body elastic compliance are all intrinsically modeled in the finite element model.
Transmission error is a computed output; there is no need to invoke approximations with static transmission
error as an excitation. This model significantly reduces the assumptions needed to model the complex dynamic
mesh forces.

Reference frames are attached to each component, and these rotate according to nominal trajectories from
the rigid body kinematics of planetary gears. The calculated rotational and translational component
vibrations are the deflections of the bodies from these nominal kinematic positions (i.e., dynamic transmission
error and translational motions on bearings). Bearings are modeled with 3� 3 stiffness matrices. Viscous
bearing damping is included by a 3� 3 damping matrix between the connecting bodies.

Small values of material damping coefficients a and b are introduced in the finite element models to remove
numerical instabilities in the solution method. The Rayleigh damping model used here assumes that the
damping of a finite element is proportional to the mass (Mfe) and stiffness (Kfe) of the element, i.e.,
Cfe ¼ aMfe+bKfe. The viscous bearing damping and the material damping coefficients are selected such that
the damping ratios at the vibration modes of interest are less than 3%. These values are comparable to the 1%
value that Blankenship and Kahraman [2] estimated for their experiments on a spur gear pair.

The finite element model of an example system with four planets is shown in Fig. 1(b). The carrier
(not shown) is modeled as a lumped inertia. The gear geometry data is given in Table 2. All the planetary
gear configurations analyzed in this study have the same gears and carrier. The exterior circle of the ring
gear and the interior bores of the sun and planet gears are constrained to remain circular. In some
applications, the gear bodies, especially the ring gear, may deform elastically into non-circular shapes,
requiring an extension of the present analytical model [30]. The outer ring gear circle is rigidly fixed in all
systems considered. The constant input torque is applied at the sun gear. The carrier rotational vibration is
constrained to zero, i.e., the carrier always rotates according to its nominal kinematic position, which removes
the rigid body mode.
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2.2.1. Mesh stiffness variation from the finite element model

Because of the continuous gear rotation, the gear meshing is periodic at the mesh frequency, which is the
same at all meshes in a single stage planetary gear. The mesh frequency om for a system with fixed ring is

om ¼
ZsZr

Zs þ Zr

os, (6)

where os is the sun speed, and Zs, Zr are the numbers of teeth on the sun and ring gears, respectively.
The mesh stiffness variation of a sun–planet mesh is obtained from static finite element analysis of an

isolated sun–planet pair. The gear pair has rigid bearings to isolate mesh stiffness from any bearing deflections.
The planet is constrained not to rotate and the torque Ts ¼ T=N is applied on the sun, where T is the sun
torque of the planetary system. From the calculated transmission error us ¼ rsys, the mesh stiffness k̂s1 at a
particular mesh position is k̂s1 ¼ Ts=ðrsusÞ. This calculation is repeated at multiple steps within a mesh cycle. A
similar process is used for the ring–planet mesh. Mesh stiffness variations of the sun–planet 1 and ring–planet
1 meshes calculated for the example systems in Table 1 at the sun input torque of 1130Nm are shown in
Fig. 2. Differences for the three and four planet cases result due to the change in mesh forces as a result of load
sharing among planets for the same input torque. In particular, the large variation in the ring–planet mesh
stiffness in Fig. 2(b) between the three and four planet cases is due to corner contact at higher mesh forces in
the three planet case. These figures can be translated into time-varying mesh stiffness histories when viewed as
variations over a period t0-t0+Tm.
Table 4

Mesh phasing rules to excite various harmonics (l) of modal responses in equally spaced and diametrically opposed planet systems for both

rotational–translational and purely rotational systems (from Refs. [18,19])

Rotational–translational system Purely rotational system

Planet mode Rotational

mode

Translational

mode

Degenerate

mode

Distinct

mode

Equally spaced planets, kl ¼ mod (lZs/N) kl 6¼0, 1, N�1 0 1, N�1 kl 6¼0 0

Diametrically opposed planet pairs, lZs Even (N ¼ 4); all (NX6) Even Odd All Even
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Fig. 3. Steady state (a) rms values (mean removed), and (b) mean values of sun rotation for increasing and decreasing speeds in finite

element and analytical models for case 1 (note: DT Mode—distinct mode): (—) FE model and (- - -) analytical model.
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A relative mesh phase grs exists between sun–planet and ring–planet meshes for a given planet (measured
from pitch points) [20]. In the present analysis the beginning mesh cycle points (and all other points) in the
isolated sun–planet 1 and ring–planet 1 analyses of Fig. 2(a) and (b) correspond to an identical planet 1
position in the assembled planetary gear. Thus, the mesh stiffnesses in Fig. 2 calculated from the isolated
sun–planet 1 and ring–planet 1 gear pairs automatically contain the relative mesh phase between the
sun–planet 1 and ring–planet 1 meshes. The mesh stiffness of all other sun–planet and ring–planet meshes are
obtained from the mesh phase relations [18,20]

k̂snðtÞ ¼ k̂s1ðt� gsnTmÞ; k̂rnðtÞ ¼ k̂r1ðt� grnTmÞ, (7)
0
5000

10000
15000

1000

1500

2000

2500

0

10

20

30

40

M
es

h 
fre

qu
en

cy
 (H

z)

Frequency (Hz)

S
un

 r
ot

at
io

n 
(µ

m
)

0
5000

10000
15000

1000

1500

2000

2500

0

10

20

30

40

M
es

h 
fre

qu
en

cy
 (H

z)

Frequency (Hz)

S
un

 r
ot

at
io

n 
(µ

m
)

�1 �4

�1 �4

a

b

Fig. 4. Waterfall spectra of sun rotation for decreasing speeds in (a) finite element model and (b) analytical models of case 1.



ARTICLE IN PRESS
V.K. Ambarisha, R.G. Parker / Journal of Sound and Vibration 302 (2007) 577–595 585
where k̂sn, k̂rn are the planet n mesh stiffnesses with the sun and ring, respectively, gsn, grn are the sun–planet n

and ring–planet n mesh phases, and Tm ¼ 2p/om is the mesh period. The mesh phases are

gsn ¼ �Zscn; grn ¼ �Zrcn, (8)

where the upper and lower signs are for systems with clockwise and counter-clockwise planet rotations,
respectively.
3. Nonlinear dynamic response of planetary gears

In the present study the dynamics of four planetary gear configurations are analyzed. The system
parameters are given in Tables 1–3. The gear teeth are perfect involutes. The ring gear is fixed in the present
study, although fixed sun and fixed carrier cases can be treated similarly. The carrier is constrained to have
zero rotational vibration, corresponding to a very high inertia of the output element. The natural frequencies
of these systems are given in Table 1. The rotational systems in cases 1 and 2 have two sets of natural
frequencies and modes: distinct modes in which all the components of the system rotate, and degenerate
modes in which the sun, ring and carrier do not rotate, only the planets rotate [16]. The rotational–transla-
tional systems (cases 3 and 4) in general have three sets of natural frequencies and modes: rotational modes,
translational modes and planet modes [12]. Planet modes exist only for systems with number of planets N43.

Numerical integration is used for both models. For speed sweeps in the analytical model, speed is varied in
sharp steps by changing the mesh period Tm. The final steady-state response at a particular speed is used as the
initial condition for the next speed. Eq. (1) is solved by using a fourth-order Runge–Kutta integration method.
In order to capture a sufficient number of mesh frequency harmonics in the response spectra, 100 time steps
per mesh cycle are selected. The transient region, which is discarded at each speed change, extends for 50 mesh
cycles before recording the steady-state solution. To obtain sufficient frequency resolution in the response
spectra, the steady-state response is recorded for 20 mesh cycles. For speed sweeps in the finite element model,
speed is varied continuously in ramp changes between steady values. The ramp rate, transient time, and other
numerical parameters for the finite element model are carefully selected to achieve numerical stability,
convergence of solutions, and reduction in computation time with minimal effect on the computed results.

Before looking at the dynamic responses, it is important to understand how mesh phasing excites or
suppresses certain harmonics of the rotational, translational and planet mode responses. Mesh phasing rules
are derived based on the symmetry of planetary gears and periodicity of the mesh forces [17–20]. These mesh
phasing rules are summarized in Table 4. If a rotational (or translational mode) is excited in a given harmonic
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Fig. 5. Steady state (a) ring–planet 1 and (b) sun–Planet 1 mesh forces at mesh frequency 1900Hz corresponding to the lower branch of

case 1. Ring–planet 1 mesh force is dominant: (—) FE model and (- - -) analytical model.
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Fig. 7. Vibration modes corresponding to the distinct natural frequencies for the system of case 1 in Table 1. The ring is fixed and the

carrier is constrained to zero rotational vibration: (a) mode 1 with o1 ¼ 1846.2Hz, and (b) mode 4 with o4 ¼ 4379.8Hz. (—) modal

deflection and (- - -) undeformed.
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of mesh frequency, so too is the rotation (or translation) of the sun, ring, and carrier in that harmonic. In
planetary gears, similar to other geared systems, resonance potentially occurs when the mesh frequency or one
of its harmonics equals a natural frequency (lomEoi, l ¼ 1, 2,y). According to the mesh phasing rules in
Table 4, however, certain harmonics of mesh frequency do not excite resonant response.

3.1. Jump phenomena in steady-state responses

The natural frequencies of the system in case 1 (Table 1) are obtained from the eigenvalue problem of the
rotational model Eq. (3) with mean mesh stiffnesses. In Fig. 3(a) and (b) are shown the rms (mean-removed)
and mean values of the steady-state sun rotation in a rotational system with three equally spaced planets
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(case 1, Table 1) from both the analytical and finite element models. The rms mean-removed values are
calculated in the time domain; there is no omission of any spectral content. Only stable solutions are shown, as
the numerical integration methods used to solve the dynamics of both models do not trace unstable solutions.
The agreement between models is very good. The spectral details of the sun rotation for decreasing mesh
frequency from the finite element and analytical models are shown in Fig. 4(a) and (b). The spectra generated
from both models, which are a more challenging comparison than rms, agree very well.

A nonlinear jump phenomenon occurs at the primary resonance of the first distinct mode
(omEo1 ¼ 1846Hz) as the mesh frequency is varied. Bending of the rms resonance curve to the left
indicates softening nonlinearity due to the reduced system stiffness as the gears lose contact at large vibrations.
The rms response jumps up as the frequency is increased and jumps down at a lower frequency when the mesh
frequency is decreased. Corresponding jumps opposite in direction occur in the mean response (Fig. 3(b)).
Multiple steady-state solutions are possible in the mesh frequency range between the jump up and jump down
frequencies. Jumps also occur at the resonance of the second distinct mode excited by the second harmonic of
mesh frequency (2omEo4 ¼ 4379Hz). Because 2o1Eo4, the primary resonance corresponding to o1 and the
second harmonic resonance corresponding to o4 overlap in the mesh frequency range 1800–2200Hz. The open
circles at 2350 and 2050Hz on the lower branch of the response curve indicate the onset of gear tooth
separation, which continues along the branches for increasing amplitudes.

From the mathematical form of the analytical model one concludes that the resonant behaviors are
parametric instabilities from mesh stiffness fluctuation. The finite element model shows the same dynamics
(Figs. 3 and 4) even though it is based on a formulation that makes no stipulation of a time-varying stiffness
and is not predisposed to yield the same parametric instabilities. Thus, the finite element method provides
independent confirmation of the parametrically excited structure of the analytical model.

The resonances at omE1500 and 1100Hz correspond to the second distinct mode (o4) excited by higher
harmonics of mesh frequency, i.e., 3omEo4 and 4omEo4. Because Zs ¼ 27, Zr ¼ 99, and N ¼ 3, the quantity
k ¼ mod (lZs/N) ¼ 0 for all l. Thus, the mesh phasing rules predict that the distinct modes at natural
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Fig. 9. Waterfall spectra of planet 1 rotation for decreasing speeds in (a) finite element and (b) analytical models for case 2. Chaos is

predicted in both models.
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frequencies 1846 and 4379Hz are excited by mesh frequency and any of its higher harmonics, whereas the
degenerate modes at o2 ¼ o3 ¼ 2744Hz are not excited by any harmonics of mesh frequency. Consistent with
these predictions, the response shows no resonance corresponding to the degenerate modes (o2 and o3).

The upper branch at 1900Hz (Fig. 3) corresponds to the second harmonic resonance of o4, that is 2omEo4,
and the lower branch corresponds to the primary resonance of o1, i.e., omEo1. The multiple steady-state
responses at mesh frequency 1900Hz are obtained by choosing suitable initial conditions. In spite of the
occurrence of tooth contact loss at 1900Hz on the upper branch, the solution remains periodic with period Tm,
as is evident from Fig. 4.

Examination of the dynamic mesh forces near various resonances indicates the source of the vibration. The
sun–planet 1 and ring–planet 1 mesh forces at 1900Hz corresponding to the lower branch for the case 1 system
are shown in Fig. 5(a) and (b). The dynamic fluctuation of the ring–planet 1 mesh force is higher than that for
the sun–planet 1 mesh force. In fact, the ring–planet 1 mesh loses contact even though the sun–planet 1 mesh
does not. This dominance of ring–planet mesh force over sun–planet mesh force occurs at all other resonances
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corresponding to the first distinct mode o1. In Fig. 6(a) and (b) are shown the sun–planet 1 and ring–planet 1
mesh forces at the same mesh frequency but corresponding to the upper branch. While both meshes lose
contact, the dynamic fluctuation of the sun–planet 1 mesh force is higher than that for the ring–planet 1 mesh
force, and the contact loss at the sun–planet 1 mesh is more pronounced than at the ring–planet 1 mesh. This
dominance of sun–planet mesh force over ring–planet mesh force occurs at all other resonances corresponding
to the second distinct mode o4. The strong agreement between the finite element and analytical mesh forces
shown in Figs. 5 and 6 supports the validity of the analytical model.

The dominance of either the ring–planet or sun–planet mesh forces at a given resonance is directly related to
the resonant vibration mode. Dynamic mesh forces are approximately proportional to the mesh deflections of
the dominant resonant mode. For the first distinct mode (o1) the mesh deflection at a ring–planet mesh is
greater than the mesh deflection at a sun–planet mesh (Fig. 7(a)), resulting in larger mesh forces at the
ring–planet meshes than at the sun–planet meshes. For the second distinct mode the mesh deflection at a
sun–planet mesh exceeds the mesh deflection at a ring–planet mesh (Fig. 7(b)), resulting in dominance of the
sun–planet mesh forces.

3.2. Chaotic response

The rms values (mean-removed) of the planet 1 rotation at various speeds for a rotational system with four
diametrically opposed planets (case 2, Table 1) are shown in Fig. 8. The natural frequencies of the system are
in Table 1. Jump phenomena for increasing and decreasing speeds occur near the primary resonance of the
first degenerate mode (omEo4 ¼ 2860Hz), as indicated by the arrows in Fig. 8. The distinctive feature in this
case is the chaotic response along the upper branch for decreasing speed between 2600 and 1700Hz. Other
resonant modes might also have been excited in the ensuing chaotic response for decreasing speeds. The
broadband spectra in the waterfall plot from both the analytical and finite element models for decreasing
speeds in Fig. 9(a) and (b) show that the motion is chaotic. Chaotic response is also observed in the spur gear
pair experiments of Kahraman and Blankenship [1]. Chaotic motion does not occur for the lower branch
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Fig. 11. Waterfall spectra of planet 1 rotation for decreasing speeds in (a) finite element and (b) analytical models of case 4. Chaos is

predicted in both the models in the mesh frequency range of 1780–1700Hz.
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corresponding to increasing speed. The analytical and finite element results agree well in both rms values and
detailed spectra except in the chaotic regions where the details of the chaotic attractors differ. This is not
unexpected as the attractors are likely sensitive to the model, and the two models are based on different
foundations with different modeling refinement. The speeds at which chaos occurs match between the models.
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In the non-chaotic regions, according to the mesh phasing rules in Table 4, degenerate modes are excited by
all harmonics of mesh frequency and distinct modes are excited only by even harmonics. Resonances near
mesh frequencies of 1350, 850, and 690Hz correspond to the degenerate modes excited by higher harmonics of
mesh frequency and the very small resonance peak near 1000Hz corresponds to the first distinct mode excited
by the second harmonic of mesh frequency.

In Fig. 10 is shown the planet 1 rotation of a system with four diametrically opposed planets with flex-
ible bearings (case 4, Table 1). This system includes rotational and translational degrees of freedom
of the planetary gear components. The first few natural frequencies are in Table 1. The response corres-
ponding to the upper branch (decreasing speed) near primary resonance of the first translational mode
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(omEo1 ¼ 1766Hz) becomes chaotic in the mesh frequency range 1780–1700Hz. This is evident from the
distributed, broadband spectra of the response for decreasing speed shown in the waterfall plots in Fig. 11
from the analytical and finite element models. In the waterfall spectra a resonance peak at 1720Hz
corresponding to the closely spaced translational modes at o4Eo5 in the chaotic region is excited by the
second harmonic of the mesh frequency. While this should not be possible based on mesh phasing rules, the
mesh phasing rules derived based on periodicity of planetary gear mesh forces are not valid during chaotic
motions. Both models capture this deviation, and agreement of the spectra is good throughout the analyzed
range except where chaos occurs (although the speeds where chaos occurs also match).

3.3. Period-doubling bifurcation

Period-doubling bifurcations are a route to chaos in clearance-type nonlinear systems when system
parameters such as peak–peak dynamic forces/mesh stiffness variations or damping are changed [31]. This
type of behavior appears to occur in planetary gears as well, where the nonlinearity is of clearance-type. In
Fig. 12 is shown the rms (mean-removed) and mean steady-state response of planet 1 rotation for a system
with three equally spaced planets with flexible bearings (case 3, Table 1). The first few natural frequencies are
in Table 1. Spectral details of the finite element response are shown in Fig. 13. The analytical model spectra
agree well with comparison equal to that in Fig. 4. Note the open circle at 2200Hz in the response curve of
Fig. 12(a). This delineates the boundary of contact loss (of the ring–planet meshes for this system). Another
open circle at 2150Hz indicates a sudden period-doubling in the response as the mesh frequency is decreased.
Period-doubling is evident in the waterfall spectra in Fig. 13 where response of half-orders of mesh frequency
is present. Response at half of mesh frequency is common in geared systems when the mesh frequency or one
of its harmonics is nearly twice a natural frequency (lomE2oi). Such behavior is explained by linear theory
where the time-varying mesh stiffness at frequency lom excites parametric instability of the ith mode [16]. In
contrast, the period-doubling in Fig. 13 is truly nonlinear. To determine whether the response is a parametric
resonance caused by the second harmonic of mesh frequency, a simulation using the analytical model without
any of the higher harmonics in the mesh stiffnesses variation is conducted. The response is still period-2Tm.
Hence this is not a parametric instability but a period-doubling bifurcation near primary resonance (omEo3).

When the amplitude of the first harmonic of mesh stiffness variation at all meshes is doubled, keeping the
rest of system parameters the same, chaos is observed at the mesh frequency of 1900Hz corresponding to the
upper branch. The Poincaré map in Fig. 14(a) and the unrepeating time history of planet 1 rotation in
Fig. 14(b) confirm that the response is chaotic. The solution turns to period-Tm when the amplitude of the first
harmonic of all mesh stiffnesses is halved. Thus from our observations of the transition of period-Tm solution
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to period-2Tm and finally to chaos with increasing amplitudes of mesh stiffness variation we hypothesise that
this is an occurrence of period-doubling bifurcation leading to chaos. Period-4Tm and period-8Tm solutions
would better establish the period-doubling route to chaos, but such solutions were not observed for this
example system.

Similar to the chaotic regions, mesh phasing rules do not apply in the period-doubling regions. According
to the mesh phasing rules in Table 4, sun translations should not be excited for the present system (case 3).
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In Fig. 15 it is shown that sun translation, however, is excited in the period-doubling region but remains zero
(as anticipated) in other regions. Because of the identical relative positioning and mesh phase of all three
planets (symmetry) in the present system (case 3), the dynamic forces at all sun–planet meshes are the same at
all ring–planet meshes. In Fig. 16 the ring–planet and sun–planet mesh forces at 2150Hz are shown. Even
though ring–planet tooth separation occurs at this mesh frequency, the dynamic mesh forces at all the three
ring–planet and sun–planet meshes remain identical and Tm-periodic, in accordance with the mesh phasing
analysis [18–20]. Mesh forces at 1900Hz on the upper branch in the period-doubling region, however, are not
identical and are 2Tm-periodic (Fig. 17). In the period-doubling region the period-Tm solution exists but might
be unstable bifurcating to a period-2Tm solution. The symmetry of the system is lost, as shown in Fig. 17.
Periodicity and symmetry of mesh forces are key assumptions in deriving mesh phasing rules, so deviation
from these rules in chaotic and period-doubling regions is natural.

4. Conclusions

In this paper two independent models: one a lumped-parameter mathematical model and the other a finite
element model, with different formulations and different mesh modeling assumptions are used to analyze the
nonlinear dynamics of planetary gears. The main conclusions are:
(1)
 There is strong agreement between the analytical and finite element model’s responses across a range of
complicated nonlinear behaviors for different planetary gear configurations; this confirms the validity of
the lumped-parameter model for predicting planetary gear dynamics.
(2)
 Resonances occur due to parametric instabilities from mesh stiffness fluctuation. The bending of resonance
curves to the left indicate softening-type nonlinearity due to tooth contact loss. Jumps occur near primary
and higher harmonic resonances due to multiple steady-state solutions in these regions.
(3)
 Other nonlinear phenomena common in systems having clearance-type nonlinearities such as chaos and
period-doubling bifurcation are predicted by both models. The occurrence of chaos stresses the need to
model tooth contact loss nonlinearity in planetary gears.
(4)
 The mesh phasing rules, derived based on the periodicity and the symmetry of mesh forces, are valid even
when tooth contact loss occurs. Chaos or period-doubling bifurcations, however, disturb the symmetry in
planetary gears. Hence, mesh phasing rules are not valid in these regions.
(5)
 The dominance of either the sun–planet or ring–planet mesh forces at a given resonance is directly related
to the mesh deflection in that particular resonant mode.
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